

Metaverse standards forum[™]

Standards Cooperation for an Open and Inclusive Metaverse

metaverse-standards.org | @Metaverse_Forum

3D Web Interoperability

SIGGRAPH 2024 Domain Group Status Update

Nicholas F. Polys, PhD, Director of Visual Computing, Virginia Tech, USA Johannes Behr, Dr.-Ing, Co-Founder & CPO, Threedy GmbH, Germany

Domain Group Overview

Our goal is to transform the web into a spatial, immersive realm that's seamless, efficient, engaging and fun for all and remain a core component of

the next iteration of the internet...

Our **goal** is: bringing the web to the open metaverse Our **strategy** is: influencing the evolution of web standards Our **tactics** include: use case analysis, gap analysis, driving consensus, creating tools Our **priorities** are: seamless linked experiences, authoring, clients/servers

There is one Web :

composed of w multiple URL-addressable and linked interactive experiences

Similarly, there is one **Metaverse**:

composed of multiple addressable and linked interactive and spatial experiences called virtual worlds

Use Cases & Requirements

Illustrate users' requirements:

- consistency of experience
- portable personal content
- metaverse bookmarks
- virtual field trips, and
- safety simulation
- ...

Virginia Tech Visionarium Lab

Gap Analysis -> Projects

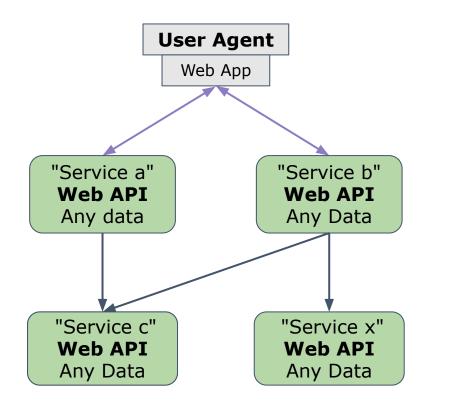
Examine patterns across:

W3C, ISO, Web3D, Khronos, IEEE, OGC, MPEG, ...

Standards Development Organizations (SDOs).

Project 1: Linked Experiences

Mechanisms to link and reference virtual worlds and parts thereof


a. Problem Statement:

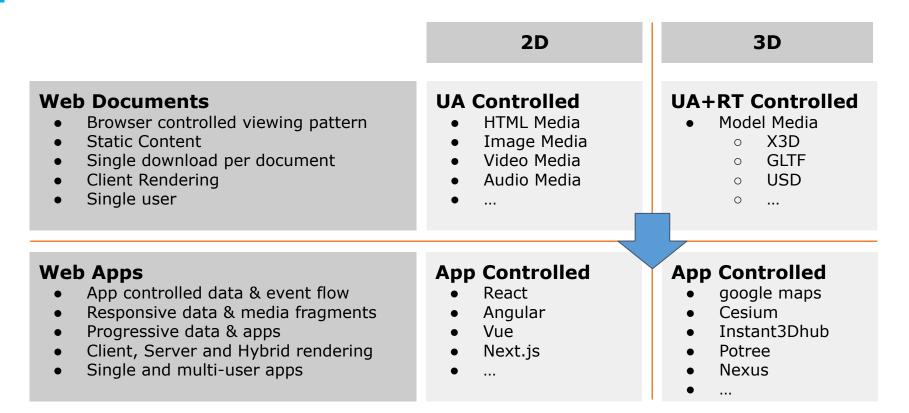
Use cases demonstrate a wide variety of ways that virtual worlds and physical worlds and user information may be linked;

How can we distinguish these different modes and their requirements?

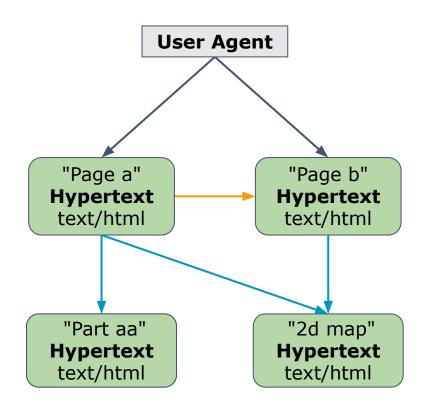
Scope: The (modern) Web

From Web Documents to Web Apps

- App controlled data & event flow a.
- Responsive data & media fragments b.
- Progressive data & apps C.
- Client, Server and Hybrid rendering d
- Single and multi-user apps e

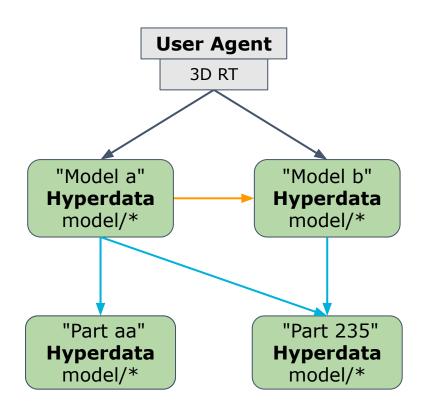

Fom Web Resources to API Endpoints a. HTTP & WS data transmission 2.

- 1To1 Content Negotiation and Encoding b.
 - html/text 1.
 - ii. application/json
 - model/jt 111.
 - iv. ...
- Service agnostic authentication (e.g. SSC C


From Last mile to Service Networks 3.

- Deep service dependency stack (> 30) Microservice lead to smaller packages a
- b.
- Native- and Web-Client symmetry С.

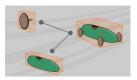
Scope: The modern 3D Web continuum


Scope: Connectivity of the (classic) 2D Web

- URL are pointer to HTTP Resources which can be of any content type (<u>http 1.0</u>)
- text/html as Hypertext content
 - Is evaluated in the User-Agent
 - In domain URI references

<a> Links to new html-page <iframe> Links to sub-page

Scope: Connectivity of the (classic) 3D Web



- URL are pointer to HTTP Resources which can be of any content type (<u>http 1.0</u>)
- Any model/* as **3D content** data
 - Is evaluated in a 3D Runtime (3DRT)
 - Browser Plugin
 - Javascript Frameworks
 - Three.js
 - X3DOM
 - ...
 - <u>**RFC2077</u>** defines the model domain</u>
 - Coordinate System
 - In domain references
 - <...> Links to new scene
 - <...> Links to sub-data
 - >40 <u>IANA-Registered</u> types
 - model/gltf-binary
 - model/vnd.usda
 - model/x3d+xml

...

Scope: Connectivity of the (classic) 3D Web

- Links inside the model domain
 - Builds on existing HTTP standards
 - Implemented in existing standard

In Domain LInks	None	In-Format	Any-Format
Format	GLTF, obj, stl, …	USD, GLTFX, collada, plmxml, …	X3D, STEP,

<X3D>

<Transform>

<Inline url='<u>http://example.com/spatialpool/id/6i9454</u>" > </Transform>

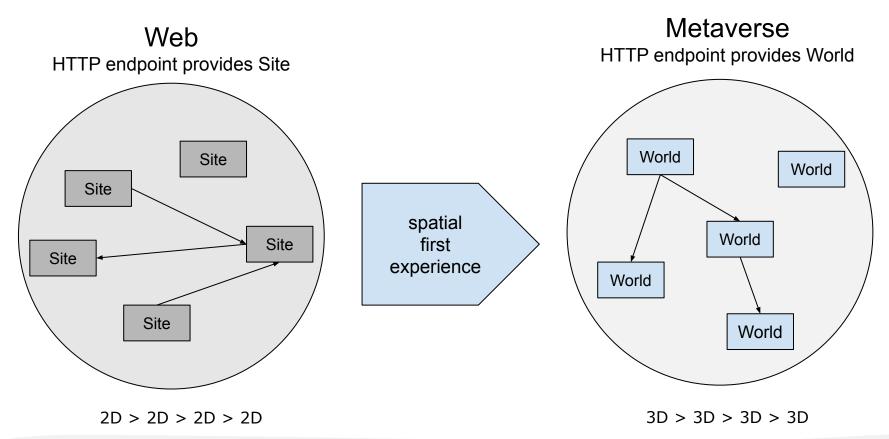
</X3D>

(Valid X3D example pointing to data endpoint with undefined format. The model format will be negotiated in the actual API call)

Scope: Connectivity of the (classic) 3D Web

- Links inside the model domain and fragments of data
- URI Fragment standards allow to address sub-data E.g.: <u>RFC7111</u> for "text/csv": "example.com/data.csv#row=3-5"

W3C Media Frament URI


Spatially-, temporally- and structure-based addressing schema

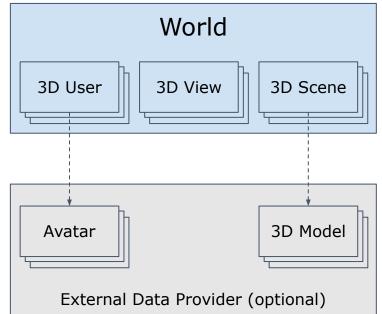
example.com/media/movie.mpg#xywh=100,100,10,10&t=10,20 example.com/media/movie.mpg#id=cap

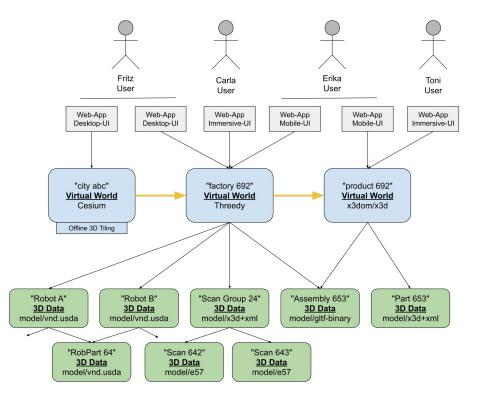
Open Opportunity: Missing "Model Fragment URI" Spatially-, temporally- and structure-based addressing

E.g., example.com/model/434/#xyzwhz=100,100,100,20,20,20&t=10,20 Object- and Object-set-based addressing schema example.com/model/434/#objects="/tire"

Vision: The web of worlds

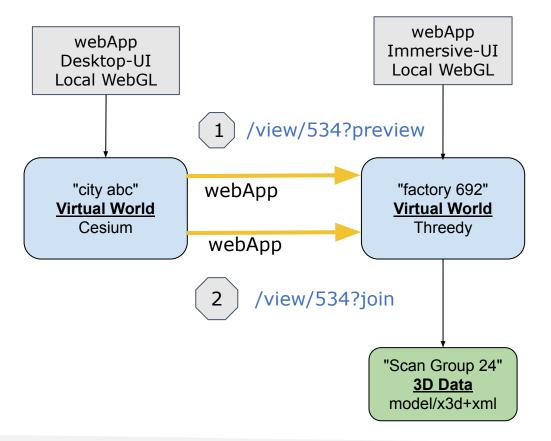
Mission: Virtual Worlds on the modern web


- 1. Single URI pointing to discrete virtual world
 - a. Links between worlds (e.g jumps/portals and inserts in spatial composition)
 - b. Persistent data references in linked data environments (e.g. Digital twins, product configuration, ...)
 - c. Storing URI/URL for later use (e.g. Bookmarks, Ticket system, ...)
 - d. **Sharing** URI with second user (e.g. teams, ...)
- 2. Can be opened and joined in any browser directly
 - a. Shared interactive spatial experience and not 3D data (e.g x3d, gltf)
 - b. Web app controlled user experience as dominant delivery model (e.g client data vs remote rendering)
- 3. Rich user experience for any spatial data composition and size
 - a. Static and dynamic spatial data composition, billions of addressable spatial data states
 - b. High visual efficiency and fidelity
- 4. Shared multi user and multi device scenarios
 - a. Mixed and highly dynamic user and device configurations (e.g desktop, mobile, immersive)
- 5. World agnostic user identification and data authentication (e.g. SSO)



Opportunity: Uniform Web API standard for worlds

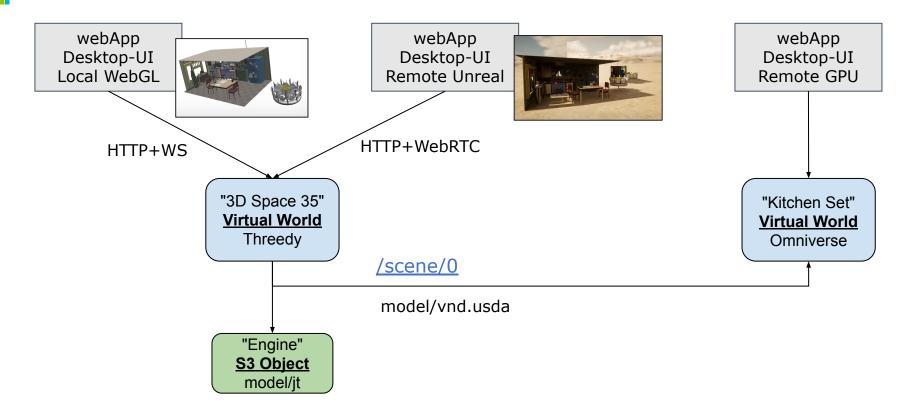
- Builds on existing web and http stack and standards
- Providing a single URL endpoint for each addressable world
 - E.g. <u>http://example.com/superverse/395844</u>
- Open URL in UA to join the world as interactive experience
 - Automatic User ID controlled join/rejoin management
 - Web-App controlled IO/data/pixel flow
 - E.g. Local data vs remote rendering
 - Existing user & views should be addressable
 - E.g. superverse/395844/user/983
- **Open URL** in **UA** to **preview** the world (optional)
 - No additional user but user based authorization
 - Web-App controlled IO/data/pixel flow
 - Existing userviews should be addressable
- Scene state as model data (optional)
 - Including external links, multi-standard (e.g. x3d, usd, gltf)



Use-Case 1/3: Shared links in multi-user/device setups

- **Fritz** clicks "city abc" link in email
 - UA starts new Web-App with desktop-UI
- **Fritz** navigates to factory section
 - Fritz clicks on "explore" button UA starts new Web-App with desktop-UI
- **Fritz** shares "factory 692" link with Carla
- Carla Opens "factory 692" link on XR-Class UA starts new Web-App with immersive-UI
- **Carla** shares link with Erika in teams .
- **Erika** Open "factory 692" link on phone UA starts new Web-App with mobile-UI
- Erika navigates to product section
- **Erika** activates "product" objects UA starts new Web-App with mobile-UI
- Erika shares the "product 692" link with Toni
- **Toni** open "Product 692" on AR-class
 - UA starts new Web-App with immersive-UI

Use-Case 2/3: Previews and portals



Join us!

Use-Case 3/3: Compose scene state from second world

Validation: The Seven Rules of the Metaverse check

- 1. There is only one Metaverse.
- 2. The Metaverse is for everyone.
- 3. Nobody controls the Metaverse.
- 4. The Metaverse is open.
- 5. The Metaverse is hardware-independent.
- 6. The Metaverse is a Network.
- 7. The Metaverse is the Internet.

. . .

Next Steps

- Scope the proposed API
- Landing Page
 - Github
 - API spec
- Demo and test Continuous experiences
 - Desktop, mobile, XR device (Immersive)...
- Addition benefits for Previews and Portals
 - Use-Case match
 - Industrial Metaverse
 - ...

Project 2: Functional Profiles

Functional profiles for Metaverse applications – content interoperability

a. *Problem Statement:* 3D scenes are built up from a variety of resources, from geometry and materials to lighting, sensors, and rich content models;

Can we define levels of 3D content interoperability that is useful for composing and traversing the Metaverse?

3D Web Content

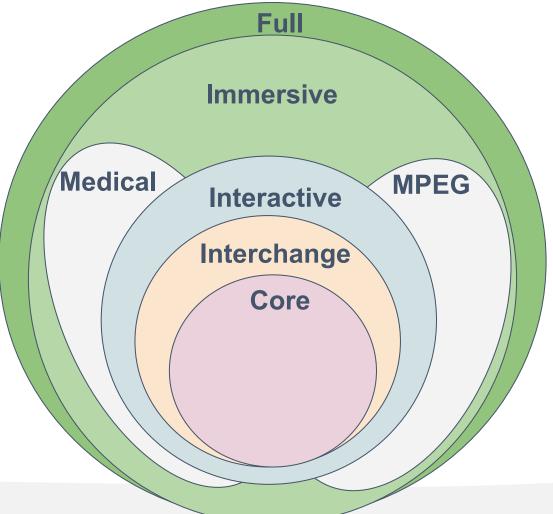
3D: More than just geometry!

- Interactions
- Animations, Lights,
- WebAudio
- LODs
- Avatars
- Semantics of 3D content ... ?

NB: Functional Profiles of Metaverse content?

Project 2: Functional Profiles

- 1. Recent example: gITF ++ extensions
- 2. <u>X3D Profiles and Components</u> provide a formal, validating basis for ISO-IEC Standard conformance that is flexible for many applications
 - X3D Extensibility means that custom nodes can validate on top of conformant Profile and Components and can extend <u>the</u> <u>interface hierarchy</u>
 - b. **X3D4** continues to evolve with gITF and WebAudio, MIDI, ... support
- 3. Open source engines live the art of the possible


X3D Profiles

Node *Components* supported at *Levels*; declared in header

NB: In X3D4, support for

gITF 2.0 and PBR Requires X3D:

- Interchange Profile +
- Networking Level 4
- Lighting Level 4
- Shape Level 2

Proof and Pudding

• X3DOM.org : Javascript Engine - New Release 1.8.3

• X ITE Javascript Engine - New Release 10.0.5

<u>Castle Game Engine</u>

• FreeWRL 6.1

Project 3: 3D UserAgent

3D UserAgent investigation

a. *Problem Statement:* The UserAgent is a piece of software that interprets a text string from a Web server on behalf of the user.

What capabilities could be added to the UserAgent (UA) to enable an accessible Metaverse?

Project 3: 3D UserAgent

Definition:

"A user agent is any software that retrieves, renders and facilitates end user interaction with Web content, or whose user interface is implemented using Web technologies."

Web Accessibility Initiative

• https://www.w3.org/WAI/standards-guidelines/

Consumer and producer protections

Web Content

1D: Generally linear text (HTML, DOM) and layouts (CSS)

Provide text alternatives for accessibility

2D: Tables have improved accessibility and CSS can be used

- Images: alt text for images and SVG style semantics
- Videos: captions and transcripts
- Canvas: application has pixel control
 - Opaque to the UserAgent
 - WebGL, WebGPU

3D UserAgent

This proposal will improve the 3D semantics in the UserAgent

Join Us!

Metaverse Standards Forum: 3D Web Interoperability

Group information and Charter:

https://metaverse-standards.org/domain-groups/3d-web-interoperability/

YouTube Channel:

https://www.youtube.com/playlist?list=PL9H8jJb7mpbkOXlo_PxEsRGNSAOyq4gxK

